Linkedin Twitter
Nome del progetto:

A Turkish company seeks partners for a Eurostars R&D project of 3D-printed patient-specific implant production. Partner(s) should be specialized on pre-clinical research and the other one(s) be experienced on additive manufacturing

Stato: Idea
Data di creazione: 12-04-2021

Obbiettivi del progetto:

An innovative Turkish company located in Ankara and specialized in medical 3D printing focuses on custom made craniomaxillofacial (CMF) implant production with several properties such as a controlled (drug) release mechanism and biodegradability. As the coordinator, the company would like to construct a Eurostars project consortium in which the possible partners will be responsible for several tasks: 3D manufacturing activities with polymer + ceramic compositions and pre-clinical research.

An innovative Turkish company founded in 2013 and operated in Ankara, focuses on additive manufacturing and 3D printing technologies combined with generative design philosophy. The company aims to replace existing metal or polymeric implants with biodegradable alternatives that also have the ability to deliver drugs in a controlled fashion at the defect site, particularly for pediatric cases. Many patients may need craniomaxillofacial implants as a consequence of work accidents, congenital deficiencies and diseases like cancer. Craniomaxillofacial bone loss cases are primarily operated with custom made implants metal or plastic material in the current situation. However, none of the metal or non-biodegradable polymeric implants is recommended to be applied to under 20 years old patients due to a faster-growing up period rather than an adult. These patients are currently treated either using patients’ own bone or using a highly customized implant made from metals or polymers. However, using patients’ own bone and using metal or polymer implants have two major downsides. These techniques cannot be applied to children since their pediatric development still continues and treatments with these techniques have the risk of infections. With the biodegradability property that the company offers, craniomaxillofacial surgery is made possible for children and it improves healing progress with bioactive agents that deliver through controlled release mechanisms. This alternative approach with a scale-up potential became possible with the advancements in 3D printing due to its groundbreaking properties in terms of customization capabilities and ease of logistics with the use of digital 3D models.
The company aims to build a consortium of 2 or 3 partners. These partners should be closing the gaps in the project together. Two different experience is being sought as innovative manufacturing methods development with special material compositions and the biocompatibility testing (including in-vitro and in-vivo studies) in this consortium.
The foreseen partnership will be based on innovative 3D manufacturing developments with predefined special composite material that involves a patented polymer containing ceramic addition. The partner sought is desired to have several years of experience in 3D printing activities with polymers and to have a 3D printer machine infrastructure. It is desired that the partner might be open to utilize the 3D printers for several process parameter developments suitable for that kind of materials. Any experience in medical 3D printing is welcome. For this, the input of all project partners is required to integrate as much of the existing experience in the project team as possible.
The other partner sought is desired to have several years of experience in pre-clinical test activities in both in-vitro and in-vivo researches with suitable infrastructure. The partner is expected to lead all pre-clinical activities based on their experience and several regulations by aiming that the outcome of the project will have several applicable test results for CE certification. Biocompatibility testing will include the compatibility investigations of cytocompatibility (in-vitro), acute local and systemic response evaluation, and in vivo monitoring. Additionally, in-vivo evaluation of the implant’s degradation and confirmation of the biocompatibility and osteoconductivity of the implant will be performed.
The deadline for EOI is 31 May 2021 and the deadline for the Call is 01 Sep 2021. The anticipated duration of the project is 2 to 3 years.

Advantages & innovations
  • Having experience in design and development in medical 3D printing for custom made implants.
  • The solution offers a technology that shortens surgery duration by 70% and also decreases treatment costs by 30% on average. Additionally, the project outcome will offer a unique solution for pediatric cases that has no equivalent commercial in the market.
  • The consortium offers the advantage of biodegradable alternatives of CMF implants to make surgery possible for pediatric cases and improve healing duration by delivering proper medicine via a drug release mechanism.
  • The faster implant integration, the faster healing progress. The biodegradability property will provide faster recovery of the defect with the natural bone structure of the patient. This challenging property will be a unique opportunity that cannot be provided by metal or other implants. This innovation will also prevent infection risks and accelerate the recovery periods.
Stage of development
Under development/lab tested