Linkedin Twitter
Nome del progetto:

NASA's Watts on the Moon Challenge

Stato: Idea
Data di creazione: 02-03-2022

Obbiettivi del progetto:

Support NASA's Phase 2 efforts to explore the solar system. This Challenge seeks solutions to transmit and store power in space.

The Watts on the Moon challenge seeks to attract innovative engineering approaches to integrating power transmission and energy storage in order to enable missions operating in the extreme cold vacuum of the lunar surface. Successful demonstrations from this challenge will complement ongoing NASA investments in lunar surface power generation.

 

Background and context

Under the Artemis program, NASA plans to return to the Moon using innovative technologies to explore more of the lunar surface than ever before and applying what we learn to take the next giant leap—sending astronauts to Mars. 

This mission will require lunar surface power systems that can deliver continuous, reliable power to support various industrial activities as well as human habitation. However, new technologies and systems will be needed to address these needs. Specifically, NASA has identified two critical gaps for lunar surface power systems:

  1. Power Transmission that can deliver power from a remote generation source to critical mission operation loads where a) power loads are frequently or permanently immersed in extreme cold; and b) there are large variations in average power loads versus peak power loads. NASA has significant interest in both wired and wireless transmission, and the challenge seeks to incentivize and demonstrate both types of solutions.
  2. Energy Storage that can a) power mission operation loads when power generation is not available; and b) survive and operate in extreme cold environments.

Given that NASA will likely need to transport power systems to the lunar surface, maximizing system efficiency and minimizing system mass will be important to addressing both gaps. 

 

Challenge goals

The Watts on the Moon Challenge is a $5 million, two-phase competition focused on addressing critical gaps in lunar surface power systems, specifically related to power transmission and energy storage. 

NASA is seeking solutions that can be designed and built and then tested in simulated lunar conditions and are well-positioned to progress toward flight readiness and future operation on the lunar surface after the challenge. 

Such solutions may also have important synergies with terrestrial energy needs, and this challenge is expected to help advance similar technologies for terrestrial application and commercialization. 

Challenge is not focused on power generation

This challenge is not focused on power generation. Although power generation will be critical to activities on the lunar surface, NASA already has a variety of programs focused on developing and deploying power generation solutions. 

Teams should not propose any power generation as part of their solution. Such proposals will not be evaluated by the judging panel.

 

Competition structure

Phase 1 of the competition launched in September 2020 and lasted eight months. Seven winners were announced in May 2021 and were awarded a total of $500,000 in prize purses.

Phase 2 of the competition will last approximately 30 months and award up to $4.5 million. Phase 2 will take place in three segments, called Competition Levels. In each Competition Level, eligible Teams will submit the required materials and will be evaluated on their submission and scored by the judging panel. 

No Mission Scenario in Phase 2

Phase 1 of the challenge included a hypothetical mission scenario and mission activities that teams were asked to address. Phase 2 of the challenge includes no such mission scenario. Teams should address the Phase 2 Technical Requirements, as described below.

Phase 2 Technical Requirements

In Phase 2, NASA is seeking solutions that:

  1. Draw power from an intermittent NASA Power Source and deliver power continuously to a NASA Load Bank;
  2. Operate in simulated lunar temperatures and vacuum;
  3. Operate continuously without any additional power generation;
  4. Demonstrate a capability to deliver power over a distance of 3 km; and
  5. Optimize total system mass and total system efficiency.


Contact / source
: NASA's Watts on the Moon Challenge | HeroX

SE SEI INTERESSATO/A AD AVERE PIU' INFORMAZIONI SU QUESTO PROGETTO REGISTRATI O EFFETTUA IL LOGIN SE SEI GIA' REGISTRATO/A